Model of a microlens directly printed onto the facet of a laser chip(Source: Nanoscribe)
With its technology expertise in 3D microfabrication, Nanoscribe participates in the recently started research project "MiLiQuant", funded by the BMBF. Together with the companies Q.ant, Zeiss and Bosch as well as the Johannes Gutenberg-University Mainz and the University Paderborn, miniaturized, frequency- and power-stable diode lasers will be developed within the next three years. Aim of the project is to develop largely alignment- and maintenance-free radiation sources for an industrial field of application: for example, sensors for medical diagnostics or autonomous driving as well as quantum-based imaging processes for medical technology.
Dr. Michael Thiel, Chief Science Officer at Nanoscribe, sees great potential for quantum technology in the use of additive micro-optics: "With our 3D printers, high-precision micro-optical components can be produced in shortest time with submicrometer resolution and enormous design freedom. We are happy to contribute our profound know-how to the MiLiQuant project for the further development of packaging technologies."
Nanoscribe 3D printers achieve outstanding precision based on two-photon polymerization (2PP). Micro-optics with challenging optical designs can be printed directly onto laser facets, glass fibers or microchips. The printed structures achieve an optical quality with surface roughness in the range of a few nanometers. In the MiLiQuant project, the printed components will be assembled with other elements into a compact package. Such miniaturized light sources are crucial for the alignment- and maintenance-free use of this quantum technological innovation.
More information about MiLiQuant can be found here: www.photonikforschung.de/projekte/quantentechnologien/projekt/miliquant.html